Author Affiliations
Abstract
1 Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
2 ARC Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, VIC 3001, Australia
3 Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
4 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
5 INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
6 National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
7 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
We demonstrate significantly improved performance of a microwave true time delay line based on an integrated optical frequency comb source. The broadband micro-comb (over 100 nm wide) features a record low free spectral range (FSR) of 49 GHz, resulting in an unprecedented record high channel number (81 over the C band)—the highest number of channels for an integrated comb source used for microwave signal processing. We theoretically analyze the performance of a phased array antenna and show that this large channel count results in a high angular resolution and wide beam-steering tunable range. This demonstrates the feasibility of our approach as a competitive solution toward implementing integrated photonic true time delays in radar and communications systems.
Radio frequency photonics Nonlinear optics, integrated optics Phased-array radar 
Photonics Research
2018, 6(5): 05000B30

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!